Preparation of RGO/TiO2/Ag Aerogel and Its Photodegradation Performance in Gas Phase Formaldehyde

Author:

Wang Haiwang,Wang Guanqi,Zhang Yukai,Ma Yuan,Wu Zhengjie,Gao Dekuan,Yang Rutong,Wang Bingzhu,Qi Xiwei,Yang Jun

Abstract

Abstract To increase the utilization ratio and catalytic efficiency of the nano TiO2, The RGO/TiO2/(Ag) powders and RGO/TiO2/Ag aerogel photocatalyst were designed and prepared. The composition and microstructure of RGO/TiO2/(Ag) powders and RGO/TiO2/Ag aerogel were studied, in addition, the photocatalytic activity of RGO/TiO2/(Ag) powders and RGO/TiO2/Ag aerogel was researched by the photocatalytic degradation behavior of formaldehyde solution and formaldehyde gas respectively. The result indicate that TiO2 is uniformly loaded on the surface of RGO with a particle size of 10 nm to 20 nm. When the amount of graphene oxide added is 1 wt%, RGO/TiO2 powder has the highest degradation effect on formaldehyde solution, in addition, the introduction of Ag can greatly improve the photocatalytic effect of the sample. The results also show that the pore size of RGO/TiO2/Ag aerogel is between 7.6 nm and 12.1 nm, and the degradation rate of formaldehyde gas is 77.08% within 2 hours.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3