Optimization and mechanisms of rapid adsorptive removal of chromium (VI) from wastewater using industrial waste derived nanoparticles

Author:

Hamadeen Hala M.,Elkhatib Elsayed A.,Moharem Mohamed L.

Abstract

AbstractNowadays, the existence of metal ions in the environment like chromium (VI) is of significant worry because of its high toxicity to many life forms. Therefore, in this study, an inexpensive and eco-friendly nano-adsorbent was produced from the waste of drinking water industry for effective elimination of Cr (VI) from wastewater. The mineralogical and morphological characterization and compositions of the bulk and nano- adsorbents were performed. The adsorption capabilities of nWTRs for Cr(VI) under different experimental conditions of adsorbent dosage, time, Cr (VI) concentration, solution pH, and competitive ions were investigated. The nWTRs adsorbent exhibits very rapid adsorption potential (92%) for Cr (VI) within the first 15 min. Langmuir model showed high predictive capability for describing Cr (VI) sorption equilibrium data. The estimated maximum sorption capacity (qmax) of nWTRs and bWTRs was found to be 40.65 mg g−1 and 2.78 mg g−1 respectively. The sorption kinetics data of Cr (VI) were perfectly fitted to the model of second-order kinetics. High immobilization capability of nWTRs for sorbed Cr (VI) is evident as most of adsorbed Cr (VI) was associated with the residual fraction. The nWTRs efficiency of Cr (VI) removal from wastewater using batch and column techniques were 98.12 and 96.86% respectively. Electrostatic interactions, outer sphere complexation and pore filling are the main mechanisms suggested for binding of Cr(VI) with functional groups of nWTRs. This study demonstrates that the green low-cost nWTRs have the potential to decontaminate industrial wastewater effluents containing Cr (VI).

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3