Direction of theoretical and experimental investigation into the mechanism of n-HA/Si-PA-SC@Ag as a bio-based heterogeneous catalyst in the reduction reactions

Author:

Sisakhti Zohreh Nouripour,Malmir Masoume,Bisafar Masoumeh Bagheri,Heravi Majid M.,Hosseinnejad Tayebeh

Abstract

AbstractIn the present study, a natural-based heterogeneous catalyst is synthesized. For this purpose, nano-hydroxyapatite (n-HA) is prepared, silica-modified and functionalized with phthalimide. Finally, Ag2+ was immobilized onto n-HA/Si-PA-SC and reduced to Ag nanoparticles by Bellis perennis flowers extract. n-HA/Si-PA-SC@Ag characterized by TGA, FTIR, SEM/EDX, XRD, TEM, BET and ICP-AES techniques. Moreover, metal–ligand interactions in n-HA/Si-PA-SC@Ag complex models were assessed to make a quantitative representation for the immobilization behavior of Ag NPs on the surface of n-HA/Si-PA-SC through quantum chemistry computations. Furthermore, the performance of n-HA/Si-PA-SC@Ag was studied in the nitroarene, methylene blue and congo red reductions. Finally, the recyclability study as well as Ag-leaching verified that, n-HA/Si-PA-SC@Ag was stable and reused-up to four times without losing its activity.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3