A nonconvex $$\hbox{TV}_q-l_1$$ regularization model and the ADMM based algorithm

Author:

Fang Zhuang,Liming Tang,Liang Wu,Hanxin Liu

Abstract

AbstractThe total variation (TV) regularization with $$l_1$$ l 1 fidelity is a popular method to restore the image contaminated by salt and pepper noise, but it often suffers from limited performance in edge-preserving. To solve this problem, we propose a nonconvex $$\hbox{TV}_q-l_1$$ TV q - l 1 regularization model in this paper, which utilizes a nonconvex $$l_q$$ l q -norm $$(0<q<1)$$ ( 0 < q < 1 ) defined in total variation (TV) domain (called $$\hbox{TV}_q$$ TV q regularizer) to regularize the restoration, and uses $$l_1$$ l 1 fidelity to measure the noise. Compared to the traditional TV model, the proposed model can more effectively preserve edges and contours since it provides a more sparse representation of the restoration in TV domain. An alternating direction method of multipliers (ADMM) combining with majorization-minimization (MM) scheme and proximity operator is introduced to numerically solve the proposed model. In particular, a sufficient condition for the convergence of the proposed algorithm is provided. Numerical results validate the proposed model and algorithm, which can effectively remove salt and pepper noise while preserving image edges and contours. In addition, compared with several state-of-the-art variational regularization models, the proposed model shows the best performance in terms of peak signal to noise ratio (PSNR) and mean structural similarity index (MSSIM). We can obtain about 0.5 dB PSNR and 0.06 MSSIM improvements against all compared models.

Funder

Natural Science Foundation of China

Natural Science Found of China

Doctoral Scientific Fund Project of Hubei Minzu University

High-level scientific research Achievement Cultivation project of Hubei Minzu University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3