Characterizing porous microaggregates and soil organic matter sequestered in allophanic paleosols on Holocene tephras using synchrotron-based X-ray microscopy and spectroscopy

Author:

Huang Doreen Yu-Tuan,Lowe David J.,Churchman G. Jock,Schipper Louis A.,Cooper Alan,Chen Tsan-Yao,Rawlence Nicolas J.

Abstract

AbstractAllophanic tephra-derived soils can sequester sizable quantities of soil organic matter (SOM). However, no studies have visualized the fine internal porous structure of allophanic soil microaggregates, nor studied the carbon structure preserved in such soils or paleosols. We used synchrotron radiation-based transmission X-ray microscopy (TXM) to perform 3D-tomography of the internal porous structure of dominantly allophanic soil microaggregates, and carbon near-edge X-ray absorption fine-structure (C NEXAFS) spectroscopy to characterize SOM in ≤ 12,000-year-old tephra-derived allophane-rich (with minor ferrihydrite) paleosols. The TXM tomography showed a vast network of internal, tortuous nano-pores within an allophanic microaggregate comprising nanoaggregates. SOM in the allophanic paleosols at four sites was dominated by carboxylic/carbonyl functional groups with subordinate quinonic, aromatic, and aliphatic groups. All samples exhibited similar compositions despite differences between the sites. That the SOM does not comprise specific types of functional groups through time implies that the functional groups are relict. The SOM originated at the land/soil surface: ongoing tephra deposition (intermittently or abruptly) then caused the land-surface to rise so that the once-surface horizons were buried more deeply and hence became increasingly isolated from inputs by the surficial/modern organic cycle. The presence of quinonic carbon, from biological processes but vulnerable to oxygen and light, indicates the exceptional protection of SOM and bio-signals in allophanic paleosols, attributable both to the porous allophane (with ferrihydrite) aggregates that occlude the relict SOM from degradation, and to rapid burial by successive tephra-fallout, as well as strong Al-organic chemical bonding. TXM and C NEXAFS spectroscopy help to unravel the fine structure of soils and SOM and are of great potential for soil science studies.

Funder

Royal Society of New Zealand

Swedish Research Council Formas

Umea University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3