Abstract
AbstractHydrogen, which is a new clean energy option for future energy systems possesses pioneering characteristics making it a desirable carbon-free energy carrier. Hydrogen storage plays a crucial role in initiating a hydrogen economy. Due to its low density, the storage of hydrogen in the gaseous and liquids states had several technical and economic challenges. Despite these traditional approaches, magnesium hydride (MgH2), which has high gravimetric and volumetric hydrogen density, offers an excellent potential option for utilizing hydrogen in automobiles and other electrical systems. In contrast to its attractive properties, MgH2 should be mechanically and chemically treated to reduce its high activation energy and enhance its modest hydrogen sorption/desorption kinetics. The present study aims to investigate the influence of doping mechanically-treated Mg metal with 5 wt% amorphous Zr2Cu abrasive nanopowders in improving its kinetics and cyclability behaviors. For the first time, solid-waste Mg, Zr, and Cu metals were utilized for preparing MgH2 and amorphous Zr2Cu alloy (catalytic agent), using hydrogen gas-reactive ball milling, and arc melting techniques, respectively. This new nanocomposite system revealed high-capacity hydrogen storage (6.6 wt%) with superior kinetics and extraordinary long cycle-life-time (1100 h) at 250 °C.
Funder
Kuwait Foundation for the Advancement of Sciences
Publisher
Springer Science and Business Media LLC
Reference61 articles.
1. Alanne, K. & Cao, S. An overview of the concept and technology of ubiquitous energy. Appl. Energy 238, 284–302 (2019).
2. Jackson, R. B. et al. Warning signs for stabilizing global CO2 emissions. Environ. Res. Lett. 12, 110202. https://doi.org/10.1088/1748-9326/aa9662 (2017).
3. Latake, PT, Pawar, P. & Ranveer, AC. The greenhouse effect and its impacts on environment. Int. J. Innov. Res. Creat. Technol. 1, 333–337 (2015).
4. El-Eskandarany, M. Sherif. Recent developments in the fabrication, characterization and implementation of MgH2-based solid-hydrogen materials in the Kuwait Institute for Scientific Research. RSC Adv. 9, 9907–9930 (2019).
5. Maryam, S. Review of modelling approaches used in the HSC context for the UK. Int. J. Hydrogen Energy 42, 24927–24938 (2017).
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献