Tracking the carbon flows in municipal waste management in China

Author:

Zhang Jing,Du Huanzheng,Wang Tao,Xiao Peiyuan,Lu Sha,Zhao Gang,Zhao Jianfu,Li Guangming

Abstract

AbstractMunicipal solid waste (MSW), a carbon-intensive waste stream, may create both instant and indirect impacts onto environmental and climate management. Despite multiple studies made for greenhouse gases (GHGs) emissions of municipal waste, this research aims to achieve a comprehensive assessment for the carbon cycle by exploring evolution of waste composition and temporal-spatial disparities in waste management. Carbon flows embodied in MSW have been estimated across 31 provinces in Mainland China in the period 2000–2018. This improved estimation could be 15–40% smaller than the conventional estimation employing a constant waste composition. Aggregately some 578 ± 117 megatonnes carbon (MtC) were contained in MSW, including 239 ± 60 Mt of fossil carbon and 339 ± 58 Mt of degradable organic carbon. After treatment, 299 ± 66 MtC were possibly deposited in landfills and dumps. 279 ± 51 MtC were released to the atmosphere, creating net GHGs emissions equivalent to1870 ± 334 megatonnes of CO2 (MtCO2e). MSW generation in China nearly doubled during the period, net GHGs emissions increased by 1.8×, whereas fossil carbon grew by a factor of 3.5, mainly propelled by an increasing content of waste plastic in MSW. More rapid growth was witnessed in provinces in southern China than in northern. Distinct spatial–temporal evolution of waste and carbon metabolism was driven by increment, composition, and management effects. In the long run, the increment and composition effects may drop off. Enhanced practices of waste management integrating the circular economy are needed to fully recycle carbon flows, minimize emissions, and manage carbon deposits in aging landfills and dumps.

Funder

National Social Science Fund of China

National Natural Science Foundation of China

Xirang Scholars Support Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference35 articles.

1. UNEP (United Nations Environment Programme), 2015. Global waste management outlook. UNEP. Preprint at: https://www.unep.org/resources/report/global-waste-management-outlook. Accessed Sep 2021.

2. World bank, Waste management in China: issues and recommendations. Urban Development Working Papers 9. East Asia Infrastructure Department (2005).

3. National Bureau of Statistics of China. China Statistical Yearbook, 2019. Beijing: China Statistics Press. (in Chinese) (2020).

4. Liu, Y., Sun, W. & Liu, J. Greenhouse gas emissions from different municipal solid waste management scenarios in China: based on carbon and energy flow analysis. J. Waste Manag. 68, 653–661 (2017).

5. IPCC. Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. IPCC (2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3