Low-voltage ride-through capability in a DFIG using FO-PID and RCO techniques under symmetrical and asymmetrical faults

Author:

Sabzevari Kiomars,Khosravi Nima,Bakr Abdelghany Muhammad,Belkhier Youcef,Tostado-Véliz Marcos,Kotb Hossam,Govender Scott

Abstract

AbstractThe power grid faults study is crucial for maintaining grid reliability and stability. Understanding these faults enables rapid detection, prevention, and mitigation, ensuring uninterrupted electricity supply, safeguarding equipment, and preventing potential cascading failures, ultimately supporting the efficient functioning of modern society. This paper delves into the intricate challenge of ensuring the robust operation of wind turbines (WTs) in the face of fault conditions, a matter of substantial concern for power system experts. To navigate this challenge effectively, the implementation of symmetrical fault ride-through (SFRT) and asymmetrical fault ride-through (AFRT) control techniques becomes imperative, as these techniques play a pivotal role in upholding the stability and dependability of the power system during adverse scenarios. This study addresses this formidable challenge by introducing an innovative SFRT–AFRT control methodology based on rotor components optimization called RCO tailored for the rotor side converter (RSC) within a doubly-fed induction generator (DFIG) utilized in wind turbine systems. The proposed control strategy encompasses a two-fold approach: firstly, the attenuation of both positive and negative components is achieved through the strategic application of boundary constraints and the establishment of reference values. Subsequently, the optimization of the control characteristic ‘$$\beta$$ β ’ is accomplished through the utilization of a particle swarm optimization (PSO) algorithm integrated within an optimization loop. This intricate interplay of mechanisms aims to optimize the performance of the RSC under fault conditions. To measure the efficacy of the proposed control technique, a comparative analysis is conducted. Fractional-order (FO) proportional–integral–derivative (PID) controllers are employed as an additional method to complement the novel approach. By systematically juxtaposing the performance of the proposed SFRT–AFRT control technique with the FO-PID controllers, a comprehensive evaluation of the proposed approach's effectiveness is attained. This comparative assessment lends valuable insights into the potential advantages and limitations of the novel control technique, thereby contributing to the advancement of fault mitigation strategies in WT systems. Finally, the paper highlights the economic viability of the proposed control method, suggesting its suitability for addressing broader power network issues, such as power quality, in future wind farm research.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3