Abstract
AbstractIn this study, we evaluated the suitability of semi-arid region of Central Morocco for wheat production using Agricultural Production Systems sIMulator (APSIM) considering weather, soil properties and crop management production factors. Model calibration was carried out using data collected from field trials. A quantitative statistics, i.e., root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), and index of agreement (d) were used in model performance evaluation. Furthermore, series of simulations were performed to simulate the future scenarios of wheat productivity based on climate projection; the optimum sowing date under water deficit condition and selection of appropriate wheat varieties. The study showed that the performance of the model was fairly accurate as judged by having RMSE = 0.13, NSE = 0.95, and d = 0.98. The realization of future climate data projection and their integration into the APSIM model allowed us to obtain future scenarios of wheat yield that vary between 0 and 2.33 t/ha throughout the study period. The simulated result confirmed that the yield obtained from plots seeded between 25 October and 25 November was higher than that of sown until 05 January. From the several varieties tested, Hartog, Sunstate, Wollaroi, Batten and Sapphire were yielded comparatively higher than the locale variety Marzak. In conclusion, APSIM-Wheat model could be used as a promising tool to identify the best management practices such as determining the sowing date and selection of crop variety based on the length of the crop cycle for adapting and mitigating climate change.
Publisher
Springer Science and Business Media LLC
Reference140 articles.
1. FAO. Food and Agriculture Organization of the United Nations. FAOSTAT Data; www.faostat.fao.org (last access 15.06.21), (2016).
2. Gomez, D., Salvador, P., Sanz, J. & Casanova, J. L. Modelling wheat yield with antecedent information, satellite and climate data using machine learning methods in Mexico. Agric. For. Meteorol. 300, 108317. https://doi.org/10.1016/j.agrformet.2020.108317 (2021).
3. Wrigley, C. W. Wheat: A unique grain for the world. In Wheat chemistry and technology 4th edn (eds Khan, K. & Shewry, P. R.) 1–17 (AACC Int. Inc, St Paul, 2009).
4. Awika, J. M. Major cereal grains production and use around the world. In Advances in Cereal Science: Implications to Food Processing and Health Promotion, Vol. 1089 (eds Awika, J. M., Piironen, V. & Bean, S.) 1–13 (American Chemical Society, 2011).
5. Gupta, R., Meghwal, M. & Prabhakar, P. K. Bioactive compounds of pigmented wheat (Triticum aestivum): Potential benefits in human health. Trends Food Sci. Technol. 110, 240–252. https://doi.org/10.1016/j.tifs.2021.02.003 (2021).
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献