An Ultrasonically Powered Implantable Microprobe for Electrolytic Ablation

Author:

Kim A.,Lee S. K.,Parupudi T.,Rahimi R.,Song S. H.,Park M. C.,Islam S.ORCID,Zhou J.,Majumdar A. K.,Park J. S.,Yoo J. M.,Ziaie B.

Abstract

AbstractElectrolytic ablation (EA) is a promising nonthermal tumor ablation technique that destroys malignant cells through induction of a locoregional pH change. EA is typically performed by inserting needle electrodes inside the tumor followed by application of direct current (DC), thus inducing electrolysis and creating localized pH changes around the electrodes. In this paper, we report an ultrasonically powered implantable EA microprobe that may increase the clinical relevance of EA by allowing wireless control over device operation (capability to remotely turn the device on and off) and providing flexibility in treatment options (easier to administer fractionated doses over a longer period). The wireless EA microprobe consists of a millimeter-sized piezoelectric ultrasonic receiver, a rectifier circuit, and a pair of platinum electrodes (overall size is 9 × 3 × 2 mm3). Once implanted through a minimally invasive procedure, the microprobe can stay within a solid tumor and be repeatedly used as needed. Ultrasonic power allows for efficient power delivery to mm-scale devices implanted deep within soft tissues of the body. The microprobe is capable of producing a direct current of 90 µA at a voltage of 5 V across the electrodes under low-intensity ultrasound (~200 mW/cm2). The DC power creates acidic (pH < 2) and alkaline (pH > 12.9) regions around the anode and the cathode, respectively. The pH change, measured using tissue-mimicking agarose gel, extends to 0.8 cm3 in volume within an hour at an expansion rate of 0.5 mm3/min. The microprobe-mediated EA ablative capability is demonstrated in vitro in cancer cells and ex vivo in mouse liver.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3