Groundwater inputs could be a significant but often overlooked source of phosphorus in lake ecosystems

Author:

Lisboa M. Sol,Schneider Rebecca L.,Rudstam Lars G.,Walter M. Todd

Abstract

AbstractFreshwater lakes are severely threatened, due largely to excess inputs of nutrients and other contaminants. Phosphorus (P) is receiving renewed attention due to recent increases in toxic cyanobacteria blooms in lakes worldwide. We investigated groundwater seepage for its role in P loading dynamics at Oneida Lake, New York, USA—one of the most well-studied lakes globally. P loading was measured at representative sites along the 88 km shoreline over three summers by directly measuring groundwater flow using seepage meters and porewater samplers. Groundwater seepage was a continuous and significant source of dissolved P over the summer months, comparable to tributary sources to the lake during that time. This constant input has enriched the concentrations of P in the nearshore surface waters, significantly above levels in the pelagic zone. Pore Total Phosphorus (TP) concentrations and loads reached extremely high values (up to 100 mg/L), with inorganic P representing only ~ 10% of TP per site. Groundwater seepage flows and P loadings were highly variable across space and time, partially explained by adjacent land uses and precipitation. Our research concludes that groundwater seepage is a significant, but overlooked, source of dissolved P and a crucial factor driving summer primary production at Oneida Lake, and likely other temperate lakes.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3