Band structure analysis of the magneto-optical effect in bcc Fe

Author:

Stejskal Ondřej,Veis Martin,Hamrle Jaroslav

Abstract

AbstractMagneto-optical effects are among the basic tools for characterization of magnetic materials. Although these effects are routinely calculated by the ab initio codes, there is very little knowledge about their origin in the electronic structure. Here, we analyze the magneto-optical effect in bcc Fe and show that it originates in avoided band-crossings due to the spin-orbit interaction. Therefore, only limited number of bands and k-points in the Brillouin zone contribute to the effect. Furthermore, these contributions always come in pairs with opposite sign but they do not cancel out due to different band curvatures providing different number of contributing reciprocal points. The magneto-optical transitions are classified by the dimensionality of the manifold that is formed by the hybridization of the generating bands as one- or two-dimensional, and by the position relative to the magnetization direction as parallel and perpendicular. The strongest magneto-optical signal is provided by two-dimensional parallel transitions.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO 2;Science Advances;2024-02-02

2. The 2022 magneto-optics roadmap;Journal of Physics D: Applied Physics;2022-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3