Research on shifting process control of automatic transmission

Author:

Zou Wujun,Wang Ye,Zhong Chaojie,Song Zhenchuan,Li Shenlong

Abstract

AbstractThe shift quality of an automatic transmission directly affects the human-perceived comfort and the durability of the automatic transmission. In general, the inconsistency caused by manufacturing errors, life-cycle changes, or other changes in hydraulic characteristics are the main reason affecting the shift quality, which should be compensated by adaptive control in the shifting process. In this paper, we first provide an in-depth analysis of the relationship between proportional solenoid current, clutch pressure, speed and torque in the shifting process control. Then we propose two efficient adaptive control strategies for the torque phase and inertia phase, respectively. Both algorithms are tested and verified on a riot utility vehicle. The experimental results indicate that the adaptive control strategies proposed in this paper can effectively compensate the engine flare and the clutch tie-up of the torque phase, and keep the inertia phase within a proper time range.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference22 articles.

1. Song, X. Design, Modeling, and Control of Automotive Power Transmission Systems (University of Minnesota, 2011).

2. Shuichi, Y., Itsuro, K. & Tomoaki, S. Slip control during inertia phase of clutch-to-clutch shift using model-free self-tuning proportional-integral-derivative control. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 234(9), 2279–2290 (2022).

3. Gao, B., Chen, H., Hu, Y. & Sanada, K. Nonlinear feedforward–feedback control of clutch-to-clutch shift technique. Veh. Syst. Dyn. 49(12), 1895–1911 (2011).

4. Meng, F., Tao, G. & Chen, H. Smooth shift control of an automatic transmission for heavy-duty vehicles. Neurocomputing 159, 197–206 (2015).

5. Kawakami, T., Ide, T., Moriyama, E., Hoki, K. & Muramatsu, M. Development of artificial intelligence to classify quality of transmission shift control using deep convolutional neural networks. IEEE Trans. Veh. Technol. 69(12), 16168–16172 (2020).

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3