DeepPDT-Net: predicting the outcome of photodynamic therapy for chronic central serous chorioretinopathy using two-stage multimodal transfer learning

Author:

Yoo Tae Keun,Kim Seo Hee,Kim Min,Lee Christopher Seungkyu,Byeon Suk Ho,Kim Sung Soo,Yeo Jinyoung,Choi Eun Young

Abstract

AbstractCentral serous chorioretinopathy (CSC), characterized by serous detachment of the macular retina, can cause permanent vision loss in the chronic course. Chronic CSC is generally treated with photodynamic therapy (PDT), which is costly and quite invasive, and the results are unpredictable. In a retrospective case–control study design, we developed a two-stage deep learning model to predict 1-year outcome of PDT using initial multimodal clinical data. The training dataset included 166 eyes with chronic CSC and an additional learning dataset containing 745 healthy control eyes. A pre-trained ResNet50-based convolutional neural network was first trained with normal fundus photographs (FPs) to detect CSC and then adapted to predict CSC treatability through transfer learning. The domain-specific ResNet50 successfully predicted treatable and refractory CSC (accuracy, 83.9%). Then other multimodal clinical data were integrated with the FP deep features using XGBoost.The final combined model (DeepPDT-Net) outperformed the domain-specific ResNet50 (accuracy, 88.0%). The FP deep features had the greatest impact on DeepPDT-Net performance, followed by central foveal thickness and age. In conclusion, DeepPDT-Net could solve the PDT outcome prediction task challenging even to retinal specialists. This two-stage strategy, adopting transfer learning and concatenating multimodal data, can overcome the clinical prediction obstacles arising from insufficient datasets.

Funder

Yonsei University College of Medicine

Korean Retina Society

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3