Improved fixation stability for repairing pedicle screw loosening using a modified cement filling technique in porcine vertebrae

Author:

Hsieh Ming-Kai,Li Yun-Da,Li Yu-Chen,Liu Mu-Yi,Tsai Tsung-Ting,Lai Po-Liang,Tai Ching-Lung

Abstract

AbstractPolymethylmethacrylate (PMMA) has been applied clinically and biomechanically repair loose pedicle screws. Controversies have arisen over data due to uncontrolled cement properties, various locations and sizes of fenestrated holes in repair screws, irregular holes and different bone densities of specimens. In this study, the pullout strength was compared for two techniques, the modified technique to use PMMA to augment a threaded hole and the traditional technique with retrograde injection of a PMMA filling, for standard loose screws in porcine vertebrae. Both techniques provided statistically significant results for sufficiently randomized specimens and experimental procedures. The difference in the pullout strength between conical and cylindrical screws for the aforementioned cement augmentation techniques was also investigated. Twenty-four single-level fresh-frozen lumbar vertebrae from L1 to L6 were harvested from four mature pigs. A total of 0.8 ml of PMMA was retrograde injected into screw holes with a 5.5 mm diameter, followed by insertion of a 5.0 mm diameter repair screw in the traditional group (n = 12). A stiff threaded PMMA hole was created with a 4.5 mm tapping screw before insertion of repair screws in the modified group (n = 12). Two screw geometries were randomly assigned as cylindrical (n = 6) and conical (n = 6) in each group. The correlations between filling techniques, screw geometries and axial pullout strength were analyzed. An appropriate screw trajectory and insertion depth were confirmed using X-ray imaging prior to pullout testing in both groups. For a given screw geometry (cylindrical or conical), the pullout force of the modified group was significantly higher than that of the traditional group. There was no significant difference in the pullout force between the screw geometries for a given filling technique. The cement augmentation technique is far more influential than the screw outer geometry. The modified PMMA technique created a greater anchor force than the traditional method and could be an alternative for revision of pedicle screw loosening.

Funder

Ministry of Science and Technology of Taiwan

Chang Gang Memorial Hospital

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3