Double-observer approach with camera traps can correct imperfect detection and improve the accuracy of density estimation of unmarked animal populations

Author:

Nakashima Yoshihiro,Hongo Shun,Mizuno Kaori,Yajima Gota,Dzefck Zeun’s C. B.

Abstract

AbstractCamera traps are a powerful tool for wildlife surveys. However, camera traps may not always detect animals passing in front. This constraint may create a substantial bias in estimating critical parameters such as the density of unmarked populations. We proposed the 'double-observer approach' with camera traps to counter the constraint, which involves setting up a paired camera trap at a station and correcting imperfect detection with a reformulated hierarchical capture-recapture model for stratified populations. We performed simulations to evaluate this approach's reliability and determine how to obtain desirable data for this approach. We then applied it to 12 mammals in Japan and Cameroon. The results showed that the model assuming a beta-binomial distribution as detection processes could correct imperfect detection as long as paired camera traps detect animals nearly independently (Correlation coefficient ≤ 0.2). Camera traps should be installed to monitor a predefined small focal area from different directions to satisfy this requirement. The field surveys showed that camera trap could miss animals by 3–40%, suggesting that current density estimation models relying on perfect detection may underestimate animal density by the same order of magnitude. We hope that our approach will be incorporated into existing density estimation models to improve their accuracy.

Funder

JST/JICA SATREPS

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3