Comparative transcriptome and weighted correlation network analyses reveal candidate genes involved in chlorogenic acid biosynthesis in sweet potato

Author:

Xu Jing,Zhu Jiahong,Lin Yanhui,Zhu Honglin,Tang Liqiong,Wang Xinhua,Wang Xiaoning

Abstract

AbstractChlorogenic acids (CGAs) are important secondary metabolites produced in sweet potato. However, the mechanisms of their biosynthesis and regulation remain unclear. To identify potential genes involved in CGA biosynthesis, analysis of the dynamic changes in CGA components and RNA sequencing were performed on young leaves (YL), mature leaves (ML), young stems (YS), mature stems (MS) and storage roots (SR). Accordingly, we found that the accumulation of six CGA components varied among the different tissues and developmental stages, with YS and YL recording the highest levels, while SR exhibited low levels. Moreover, the transcriptome analysis yielded 59,287 unigenes, 3,767 of which were related to secondary-metabolite pathways. The differentially expressed genes (DEGs) were identified based on CGA content levels by comparing the different samples, including ML vs. YL, MS vs. YS, SR vs. YL and SR vs. YS. A total of 501 common DEGs were identified, and these were mainly implicated in the secondary metabolites biosynthesis. Additionally, eight co-expressed gene modules were identified following weighted gene co-expression network analysis, while genes in darkgrey module were highly associated with CGA accumulation. Darkgrey module analysis revealed that 12 unigenes encoding crucial enzymes (PAL, 4CL, C4H, C3H and HCT/HQT) and 42 unigenes encoding transcription factors (MYB, bHLH, WD40, WRKY, ERF, MADS, GARS, bZIP and zinc finger protein) had similar expression patterns with change trends of CGAs, suggesting their potential roles in CGA metabolism. Our findings provide new insights into the biosynthesis and regulatory mechanisms of CGA pathway, and will inform future efforts to build a genetically improve sweet potato through the breeding of high CGA content varieties.

Funder

Technology Development Foundation for Research Institutes of Hainan Province

National Natural Science Foundation of China

Key Research and Development Project of Hainan Province, China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3