Experimental and numerical investigations of the water surface profile and wave extrema of supercritical flows in a narrow channel bend

Author:

Kadia SubhojitORCID,Larsson I. A. SofiaORCID,Billstein Mats,Lia Leif,Pummer ElenaORCID

Abstract

AbstractSupercritical flows in channel bends, e.g., in steep streams, chute spillways, and flood and sediment bypass tunnels (SBTs), experience cross-waves, which undulate the free surface. The designs of these hydraulic structures and flood protection retaining structures in streams necessitate computing the locations and water depths of the wave extrema. This study numerically and experimentally investigates the water surface profiles along the sidewalls, the wave extrema flow depths, and their angular locations in a narrow channel bend model of the Solis SBT in Switzerland. The 0.2 m wide and 16.75 m long channel has a bend of 6.59 m radius and 46.5° angle of deviation. The tested flow conditions produced Froude numbers ≈ 2 and aspect ratios ranging from 1.14 to 1.83. Two-phase flow simulations were performed in OpenFOAM using the RNG k–ε turbulence closure model and the volume-of-fluid method. The simulated angular locations of the first wave extrema and the corresponding flow depths deviate marginally, within ± 6.3% and ± 2.1%, respectively, from the experimental observations, which signifies good predictions using the numerical model. Larger deviations, especially for the angular locations of the wave extrema, are observed for the existing analytical and empirical approaches. Therefore, the presented numerical approach is a suitable tool in designing the height of the hydraulic structures with bends and conveying supercritical flows. In the future, the model’s application shall be extended to the design of the height and location of retaining walls, embankments, and levees in steep natural streams with bends.

Funder

Norges Teknisk-Naturvitenskapelige Universitet

HydroCen

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3