Low-temperature combustion of methane over graphene templated Co3O4 defective-nanoplates

Author:

Gong Dian,Zeng Gaofeng

Abstract

AbstractTransition metal oxides are the potential catalysts to replace noble-metal based catalyst for the catalytic combustion of methane due to the tolerable reactivity and low cost. However, these catalysts are challenged by the low temperature reactivity. Herein, the surface defective Co3O4 nanoplates are realized through a facile co-precipitation and thermal reduction method with the association of GO. The resultant catalysts (CoGO50) demonstrate a superior low-temperature reactivity for the methane oxidation to CO2 and H2O in comparison with the common Co3O4 catalyst. The reliable stability of CoGO50 catalyst was proved by 80 h testing with intermittent feeding of water vapor. The experimental analysis demonstrates that the presence of a small amount of GO significantly affects the catalysts in surface valence state, active oxygen species and surface oxygen vacancies through reacting with the cobalt oxide as a reductant. Moreover, GO plays as 2D confine template to form smaller and thinner nanoplates. This work provides a facile method to control the surface properties of catalyst not only for Co3O4 based catalysts but also for wider solid catalysts.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3