Expanding repertoire of SARS-CoV-2 deletion mutations contributes to evolution of highly transmissible variants

Author:

Venkatakrishnan A. J.,Anand Praveen,Lenehan Patrick J.,Ghosh Pritha,Suratekar Rohit,Silvert Eli,Pawlowski Colin,Siroha Abhishek,Chowdhury Dibyendu Roy,O’Horo John C.,Yao Joseph D.,Pritt Bobbi S.,Norgan Andrew P.,Hurt Ryan T.,Badley Andrew D.,Halamka John,Soundararajan Venky

Abstract

AbstractThe emergence of highly transmissible SARS-CoV-2 variants and vaccine breakthrough infections globally mandated the characterization of the immuno-evasive features of SARS-CoV-2. Here, we systematically analyzed 2.13 million SARS-CoV-2 genomes from 188 countries/territories (up to June 2021) and performed whole-genome viral sequencing from 102 COVID-19 patients, including 43 vaccine breakthrough infections. We identified 92 Spike protein mutations that increased in prevalence during at least one surge in SARS-CoV-2 test positivity in any country over a 3-month window. Deletions in the Spike protein N-terminal domain were highly enriched for these ‘surge-associated mutations’ (Odds Ratio = 14.19, 95% CI 6.15–32.75, p value = 3.41 × 10–10). Based on a longitudinal analysis of mutational prevalence globally, we found an expanding repertoire of Spike protein deletions proximal to an antigenic supersite in the N-terminal domain that may be one of the key contributors to the evolution of highly transmissible variants. Finally, we generated clinically annotated SARS-CoV-2 whole genome sequences from 102 patients and identified 107 unique mutations, including 78 substitutions and 29 deletions. In five patients, we identified distinct deletions between residues 85–90, which reside within a linear B cell epitope. Deletions in this region arose contemporaneously on a diverse background of variants across the globe since December 2020. Overall, our findings based on genomic-epidemiology and clinical surveillance suggest that the genomic deletion of dispensable antigenic regions in SARS-CoV-2 may contribute to the evasion of immune responses and the evolution of highly transmissible variants.

Funder

NIAID

Amfar

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference33 articles.

1. COVID-19 map—johns Hopkins Coronavirus resource Center. https://coronavirus.jhu.edu/map.html.

2. Mallapaty, S. India’s massive COVID surge puzzles scientists. Nature 592, 667–668 (2021).

3. Pawlowski, C. et al. FDA-authorized COVID-19 vaccines are effective per real-world evidence synthesized across a multi-state health system. Med (N Y). 2, 979–992 (2021).

4. Corchado-Garcia, J. et al. Analysis of the Effectiveness of the Ad26.COV2.S Adenoviral Vector Vaccine for Preventing COVID-19. JAMA Netw. Open. 4, e2132540 (2021).

5. Dagan, N. et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N. Engl. J. Med. 384, 1412–1423 (2021).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3