Oxidation-induced thermopower inversion in nanocrystalline SnSe thin film

Author:

Shimizu Sunao,Miwa Kazumoto,Kobayashi Takeshi,Tazawa Yujiro,Ono Shimpei

Abstract

AbstractGiven the growing demand for environmentally friendly energy sources, thermoelectric energy conversion has attracted increased interest as a promising CO2-free technology. SnSe single crystals have attracted attention as a next generation thermoelectric material due to outstanding thermoelectric properties arising from ultralow thermal conductivity. For practical applications, on the other hand, polycrystalline SnSe should be also focused because the production cost and the flexibility for applications are important factors, which requires the systematic investigation of the stability of thermoelectric performance under a pseudo operating environment. Here, we report that the physical properties of SnSe crystals with nano to submicron scale are drastically modified by atmospheric annealing. We measured the Seebeck effect while changing the annealing time and found that the large positive thermopower, + 757 μV K−1, was completely suppressed by annealing for only a few minutes and was eventually inverted to be the large negative value, − 427 μV K−1. This result would further accelerate intensive studies on SnSe nanostructures, especially focusing on the realistic device structures and sealing technologies for energy harvesting applications.

Funder

JSPS KAKENHI

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3