Author:
Zelent Mateusz,Moalic Mathieu,Mruczkiewicz Michal,Li Xiaoguang,Zhou Yan,Krawczyk Maciej
Abstract
AbstractMagnetic skyrmions, topological quasiparticles, are small stable magnetic textures that possess intriguing properties and potential for data storage applications. Hybrid nanostructures comprised of skyrmions and soft magnetic material can offer additional advantages for developing skyrmion-based spintronic and magnonic devices. We show that a Néel-type skyrmion confined within a nanodot placed on top of a ferromagnetic in-plane magnetized stripe produces a unique and compelling platform for exploring the mutual coupling between magnetization textures. The skyrmion induces an imprint upon the stripe, which, in turn, asymmetrically squeezes the skyrmion in the dot, increasing their size and the range of skyrmion stability at small values of Dzyaloshinskii–Moriya interaction, as well as introducing skyrmion bi-stability. Finally, by exploiting the properties of the skyrmion in a hybrid system, we demonstrate unlimited skyrmion transport along a racetrack, free of the skyrmion Hall effect.
Funder
National Science Centre of Poland
Poznan Supercomputing and Networking Center
Slovak Grant Agency APVV
ITMS
Publisher
Springer Science and Business Media LLC