An exceptionally stable and widespread hydrated amorphous calcium carbonate precipitated by the dog vomit slime mold Fuligo septica (Myxogastria)

Author:

Garvie Laurence A. J.,Németh Péter,Trif László

Abstract

AbstractBiogenic amorphous calcium carbonate (ACC) is typically metastable and can rapidly transform through aging, dehydration, and/or heating to crystalline calcium carbonate. Gaining insight into its structure and properties is typically hampered by its tendency to crystallize over short time periods once isolated from the host organism, and also by the small quantities that are usually available for study. Here we describe an exceptionally stable hydrated ACC (HACC) precipitated by the cosmopolitan slime mold Fuligo septica (L.) F.H. Wigg. (1780). A single slime mold can precipitate up to a gram of HACC over the course of one night. Powder x-ray diffraction (XRD) patterns, transmission electron microscopy images, infrared absorption spectra, together with the lack of optical birefringence are consistent with an amorphous material. XRD simulations, supported by thermogravimetric and evolved gas analysis data, are consistent with an intimate association of organic matter with ~ 1-nm-sized ACC units that have monohydrocalcite- and calcite-like nano-structural properties. It is postulated that this association imparts the extreme stability of the slime mold HACC by inhibiting loss of H2O and subsequent crystallization. The composition, structure, and thermal behavior of the HACC precipitated by F. septica collected over 8000 km apart and in markedly different environments, suggests a common structure, as well as similar biochemical and biomineralization mechanisms.

Funder

Arizona State University, Investigator Incentive Award

Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund

Eötvös Loránd Research Network

ELKH Research Centre for Astronomy and Earth Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3