Travertine crystal growth ripples record the hydraulic history of ancient Rome’s Anio Novus aqueduct

Author:

Keenan-Jones Duncan,Motta Davide,Garcia Marcelo H.,Sivaguru Mayandi,Perillo Mauricio,Shosted Ryan K.,Fouke Bruce W.

Abstract

AbstractTravertine crystal growth ripples are used to reconstruct the early hydraulic history of the Anio Novus aqueduct of ancient Rome. These crystalline morphologies deposited within the aqueduct channel record the hydraulic history of gravity-driven turbulent flow at the time of Roman operation. The wavelength, amplitude, and steepness of these travertine crystal growth ripples indicate that large-scale sustained aqueduct flows scaled directly with the thickness of the aqueous viscous sublayer. Resulting critical shear Reynolds numbers are comparable with those reconstructed from heat/mass transfer crystalline ripples formed in other natural and engineered environments. This includes sediment transport in rivers, lakes, and oceans, chemical precipitation and dissolution in caves, and melting and freezing in ice. Where flow depth and perimeter could be reconstructed from the distribution and stratigraphy of the travertine within the Anio Novus aqueduct, flow velocity and rate have been quantified by deriving roughness-flow relationships that are independent of water temperature. More generally, under conditions of near-constant water temperature and kinematic viscosity within the Anio Novus aqueduct channel, the travertine crystal growth ripple wavelengths increased with decreasing flow velocity, indicating that systematic changes took place in flow rate during travertine deposition. This study establishes that travertine crystal growth ripples such as those preserved in the Anio Novus provide a sensitive record of past hydraulic conditions, which can be similarly reconstructed from travertine deposited in other ancient water conveyance and storage systems around the world.

Funder

British School at Rome/British Academy

Dr William and Mrs Janet Gale

Italian Government

Macquarie University

Andrew W. Mellon Foundation

Ed and Barbara Weil fund for Universal Biomineralization at the University of Illinois Urbana-Champaign

National Aeronautics and Space Administration (NASA) Astrobiology Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3