Identification of key candidate genes for IgA nephropathy using machine learning and statistics based bioinformatics models

Author:

Al Mehedi Hasan Md.,Maniruzzaman Md.,Shin Jungpil

Abstract

AbstractImmunoglobulin-A-nephropathy (IgAN) is a kidney disease caused by the accumulation of IgAN deposits in the kidneys, which causes inflammation and damage to the kidney tissues. Various bioinformatics analysis-based approaches are widely used to predict novel candidate genes and pathways associated with IgAN. However, there is still some scope to clearly explore the molecular mechanisms and causes of IgAN development and progression. Therefore, the present study aimed to identify key candidate genes for IgAN using machine learning (ML) and statistics-based bioinformatics models. First, differentially expressed genes (DEGs) were identified using limma, and then enrichment analysis was performed on DEGs using DAVID. Protein-protein interaction (PPI) was constructed using STRING and Cytoscape was used to determine hub genes based on connectivity and hub modules based on MCODE scores and their associated genes from DEGs. Furthermore, ML-based algorithms, namely support vector machine (SVM), least absolute shrinkage and selection operator (LASSO), and partial least square discriminant analysis (PLS-DA) were applied to identify the discriminative genes of IgAN from DEGs. Finally, the key candidate genes (FOS, JUN, EGR1, FOSB, and DUSP1) were identified as overlapping genes among the selected hub genes, hub module genes, and discriminative genes from SVM, LASSO, and PLS-DA, respectively which can be used for the diagnosis and treatment of IgAN.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3