Edge-preserving smoothing filter using fast M-estimation method with an automatic determination algorithm for basic width

Author:

Yamaguchi Yudai,Yoshida IchiroORCID,Kondo Yuki,Numada Munetoshi,Koshimizu Hiroyasu,Oshiro Kaito,Saito Ryo

Abstract

AbstractDigital filtering is essential for digital imaging, image recognition, and super-resolution technology. For example, the presence of noise in images captured by digital cameras causes deterioration of the image quality and image recognition rate. In order to improve the image recognition rate, noise reduction and edge preservation must be performed during preprocessing. Noise is generally reduced using low-pass filters, such as the Gaussian filter. Although they reduce noise, such filters also have the properties of blurring edge. A strong edge blur reduces the accuracy of the feature detection in image recognition. Therefore, in our previous study, a fast M-estimation Gaussian filter for images (FMGFI) was proposed as an image filter that simultaneously achieves denoising and edge preservation. In the FMGFI, the setting of the optimal basic width of the 2nd order B-spline basis functions is important for achieving simultaneous denoising and edge preservation. In this method, the optimal basic width of the FMGFI was determined not only by manually setting the basic width but also by human judgment of the filtered images. Consequently, the inability to automatically determine the optimal basic width hindered efficient denoising during image processing Therefore, in this research, we develop and propose a method that can automatically determine the optimal basic width of the FMGFI. The previously proposed method calculates using the same basic width for all the pixels over the entire image; in contrast, the proposed method calculates using the basic width automatically determined for each pixel. The experiments confirmed that the method proposed in this study achieves higher denoising and edge preservation performance than the ones used in previous research. The results also showed that it has the highest denoising performance against salt-and-pepper noise as compared to other filters: non-local mean filter, Gaussian filter, median filter, bilateral filter, adaptive bilateral filter, and FMGFI. The experimental results for the Gaussian noise sowed that the proposed method has the same denoising and edge preservation performance as the other filters in visual evaluation. From the above, the proposed method is expected to contribute to efficient denoising and improvement of image quality by using it as a preprocessing.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3