Safely and autonomously cutting meat with a collaborative robot arm

Author:

Wright Ryan,Parekh Sagar,White Robin,Losey Dylan P.

Abstract

AbstractLabor shortages in the United States are impacting a number of industries including the meat processing sector. Collaborative technologies that work alongside humans while increasing production abilities may support the industry by enhancing automation and improving job quality. However, existing automation technologies used in the meat industry have limited collaboration potential, low flexibility, and high cost. The objective of this work was to explore the use of a robot arm to collaboratively work alongside a human and complete tasks performed in a meat processing facility. Toward this objective, we demonstrated proof-of-concept approaches to ensure human safety while exploring the capacity of the robot arm to perform example meat processing tasks. In support of human safety, we developed a knife instrumentation system to detect when the cutting implement comes into contact with meat within the collaborative space. To demonstrate the capability of the system to flexibly conduct a variety of basic meat processing tasks, we developed vision and control protocols to execute slicing, trimming, and cubing of pork loins. We also collected a subjective evaluation of the actions from experts within the U.S. meat processing industry. On average the experts rated the robot’s performance as adequate. Moreover, the experts generally preferred the cuts performed in collaboration with a human worker to cuts completed autonomously, highlighting the benefits of robotic technologies that assist human workers rather than replace them. Video demonstrations of our proposed framework can be found here: https://youtu.be/56mdHjjYMVc.

Funder

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3