Body-size Scaling is Related to Gut Microbial Diversity, Metabolism and Dietary Niche of Arboreal Folivorous Flying Squirrels

Author:

Liu Po-YuORCID,Cheng An-Chi,Huang Shiao-Wei,Lu Hsiao-Pei,Oshida Tatsuo,Liu Wenhua,Yu Hon-Tsen

Abstract

AbstractThermal homeostasis of mammals is constrained by body-size scaling. Consequently, small mammals require considerable energy to maintain a high mass-specific metabolic rate (MSMR) and sustain target body temperature. In association with gut microbiota, mammalian hosts acquire absorbable molecules and fulfill their metabolic requirements. Our objective was to characterize gut microbes in wild mammals and relate those findings to host body-size scaling. Two large (Petaurista philippensis grandis and P. alborufus lena), one medium (Trogopterus xanthipes) and one small (Pteromys volans orii) species of flying squirrels (FS) were studied. Using 16S rRNA genes, 1,104 OTUs were detected from four FS, with 1.99% of OTUs shared among all FS. Although all FS gut microbiota were dominated by Firmicutes, they were constituted by different bacterial families. Moreover, Bacteroidetes accounted for up to 19% of gut microbiota in small FS, but was absent in large FS. Finally, based on metagenome predictions, carbohydrate and amino acid metabolism genes were enriched in small body-size FS. In conclusion, gut microbiota compositions and predictive metabolic functions were characteristic of body-size in FS, consistent with their adaptations to folivorous dietary niches.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3