Deep residual-dense network based on bidirectional recurrent neural network for atrial fibrillation detection

Author:

Laghari Asif Ali,Sun Yanqiu,Alhussein Musaed,Aurangzeb Khursheed,Anwar Muhammad Shahid,Rashid Mamoon

Abstract

AbstractAtrial fibrillation easily leads to stroke, cerebral infarction and other complications, which will seriously harm the life and health of patients. Traditional deep learning methods have weak anti-interference and generalization ability. Therefore, we propose a new-fashioned deep residual-dense network via bidirectional recurrent neural network (RNN) model for atrial fibrillation detection. The combination of one-dimensional dense residual network and bidirectional RNN for atrial fibrillation detection simplifies the tedious feature extraction steps, and constructs the end-to-end neural network to achieve atrial fibrillation detection through data feature learning. Meanwhile, the attention mechanism is utilized to fuse the different features and extract the high-value information. The accuracy of the experimental results is 97.72%, the sensitivity and specificity are 93.09% and 98.71%, respectively compared with other methods.

Funder

King Saud University, Riyadh, Saudi Arabia.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference29 articles.

1. Belinchón, J. M. L., Guerrero, M. & Martínez, R. A. On the estimation the probability of cardiovascular and cerebrovascular events in hypertensive patients using nonlinear analysis, time and frequency domain methods. in Entropy 2021: The Scientific Tool of the 21st Century (2021).

2. Wen-Jun, T. et al. Elevated levels of adiponectin associated with major adverse cardiovascular and cerebrovascular events and mortality risk in ischemic stroke. Cardiovasc. Diabetol. 19(1), 125 (2021).

3. Camm, A. J. et al. Guidelines for the management of atrial fibrillation: The task force for the management of atrial fibrillation of the european society of cardiology (ESC). Eur. Heart J. 78(11), E1713–E1720 (2014).

4. Mendzelevski, B. et al. Comparing the consistency of electrocardiogram interval measurements by resting ECG versus 12-lead Holter. Ann. Noninvas. Electrocardiol. 26, 12851 (2021).

5. Qin, L., Xie, Y., Liu, X., Yuan, X. & Wang, H. an end-to-end 12-leading electrocardiogram diagnosis system based on deformable convolutional neural network with good antinoise ability. IEEE Trans. Instrum. Meas. 70, 1–13. https://doi.org/10.1109/TIM.2021.3073707 (2021).

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3