Copper oxide nanoparticles fabricated by green chemistry using Tribulus terrestris seed natural extract-photocatalyst and green electrodes for energy storage device

Author:

Meena Jayaprakash,Kumaraguru N.,Sami veerappa N.,Shin Paik-kyun,Tatsugi Jiro,Kumar Annamalai Senthil,Santhakumar Kannappan

Abstract

AbstractNanobiotechnology is a unique class of multiphase and recently become a branch of contemporary science and a paradigm shift in material research. One of the two main problems facing the field of nanomaterial synthesis is the discovery of new natural resources for the biological production of metal nanoparticles and the absence of knowledge about the chemical composition of bio-source required for synthesis and the chemical process or mechanism behind the production of metal nanoparticles presents the second difficulty. We reported template-free green synthesized copper oxide nanoparticles using Tribulus terrestris seed natural extract without any isolation process. XRD, TEM, SEM, UV–Vis, DLS, zeta potential, and BET evaluated the synthesized metal nanoparticle. The TEM analysis confirmed that the CuO NPs are well dispersed and almost round in shape with an average size of 58 nm. EDAX confirms that copper is the prominent metal present in the nanomaterial. The greener fabricated copper oxide nanoparticle was employed to degrade methyl orange dye, almost 84% of methyl orange was degraded within 120 min. The outcomes demonstrated the nanomaterial’s effective breakdown of contaminants, highlighting their potential for environmental rehabilitation. The electrochemical investigation of the CuO NPs was utilized for supercapacitor application. An appreciable value of specific capacitance is 369 F/g specific capacitances with 96.4% capacitance retention after 6000 cycles. Overall, the results of the current study show that the biologically produced copper oxide nanoparticles have intriguing uses as photocatalysts for treating water contaminants and are suitable for energy storage devices.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3