Author:
Ali Nairveen,Bolenz Christian,Todenhöfer Tilman,Stenzel Arnulf,Deetmar Peer,Kriegmair Martin,Knoll Thomas,Porubsky Stefan,Hartmann Arndt,Popp Jürgen,Kriegmair Maximilian C.,Bocklitz Thomas
Abstract
AbstractBladder cancer is one of the top 10 frequently occurring cancers and leads to most cancer deaths worldwide. Recently, blue light (BL) cystoscopy-based photodynamic diagnosis was introduced as a unique technology to enhance the detection of bladder cancer, particularly for the detection of flat and small lesions. Here, we aim to demonstrate a BL image-based artificial intelligence (AI) diagnostic platform using 216 BL images, that were acquired in four different urological departments and pathologically identified with respect to cancer malignancy, invasiveness, and grading. Thereafter, four pre-trained convolution neural networks were utilized to predict image malignancy, invasiveness, and grading. The results indicated that the classification sensitivity and specificity of malignant lesions are 95.77% and 87.84%, while the mean sensitivity and mean specificity of tumor invasiveness are 88% and 96.56%, respectively. This small multicenter clinical study clearly shows the potential of AI based classification of BL images allowing for better treatment decisions and potentially higher detection rates.
Funder
Deutsche Forschungsgemeinschaft
Bundesministerium für Bildung und Forschung
Friedrich-Schiller-Universität Jena
Publisher
Springer Science and Business Media LLC
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献