Sarcopenia prediction using shear-wave elastography, grayscale ultrasonography, and clinical information with machine learning fusion techniques: feature-level fusion vs. score-level fusion

Author:

Yi Jisook,Hahn Seok,Oh Kangrok,Lee Young Han

Abstract

AbstractThis study aimed to develop and evaluate a sarcopenia prediction model by fusing numerical features from shear-wave elastography (SWE) and gray-scale ultrasonography (GSU) examinations, using the rectus femoris muscle (RF) and categorical/numerical features related to clinical information. Both cohorts (development, 70 healthy subjects; evaluation, 81 patients) underwent ultrasonography (SWE and GSU) and computed tomography. Sarcopenia was determined using skeletal muscle index calculated from the computed tomography. Clinical and ultrasonography measurements were used to predict sarcopenia based on a linear regression model with the least absolute shrinkage and selection operator (LASSO) regularization. Furthermore, clinical and ultrasonography features were combined at the feature and score levels to improve sarcopenia prediction performance. The accuracies of LASSO were 70.57 ± 5.00–81.54 ± 4.83 (clinical) and 69.00 ± 4.52–69.73 ± 5.47 (ultrasonography). Feature-level fusion of clinical and ultrasonography (accuracy, 70.29 ± 6.63 and 83.55 ± 4.32) showed similar performance with clinical features. Score-level fusion by AdaBoost showed the best performance (accuracy, 73.43 ± 6.57–83.17 ± 5.51) in the development and evaluation cohorts, respectively. This study might suggest the potential of machine learning fusion techniques to enhance the accuracy of sarcopenia prediction models and improve clinical decision-making in patients with sarcopenia.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3