Author:
Takahashi Tatsuya,Koide Hiroaki,Sakai Hiroki,Ajito Daisuke,Kurniawan Ade,Kunisada Yuji,Nomura Takahiro
Abstract
AbstractCO2 methanation is a promising technology to enable the use of CO2 as a resource. Thermal control of CO2 methanation, which is a highly active exothermic reaction, is important to avoid thermal runaway and subsequent degradation of the catalyst. Using the heat storage capacity of a phase change material (PCM) for thermal control of the reaction is a novel passive approach. In this study a novel structure was developed, wherein catalysts were directly loaded onto a micro-encapsulated PCM (MEPCM). The MEPCM was prepared in three steps consisting of a boehmite treatment, precipitation treatment, and heat oxidation treatment, and an impregnation process was adopted to prepare a Ni catalyst. The catalyst-loaded MEPCM did not show any breakage or deformation of the capsule or a decrease in the heat storage capacity after the impregnation treatment. MEPCM demonstrated a higher potential as an alternative catalyst support in CO2 methanation than the commercially available α-Al2O3 particle. In addition, the heat storage capacity of the catalyst-loaded MEPCM suppressed the temperature rise of the catalyst bed at a high heat absorption rate (2.5 MW m−3). In conclusion, the catalyst-loaded MEPCM is a high-speed, high-precision thermal control device because of its high-density energy storage and resolution of a spatial gap between the catalyst and cooling devices. This novel concept has the potential to overcome the technical challenges faced by efficiency enhancement of industrial chemical reactions.
Funder
JSPS KAKENHI
26th The thermal & Electric Energy Technology Inc. Foundation
Steel Foundation for Environmental Protection Technology, Japan
Publisher
Springer Science and Business Media LLC
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献