Author:
Lou Shuai,Hu Rui-Qi,Liu Yue,Zhang Wan-feng,Yang Shu-Qing
Abstract
AbstractWith the aim of improving soil fertility, it is of great significance to put forward optimal irrigation and nitrogen fertilizer application strategies for improving land productivity and alleviating non-point source pollution effects. To overcome this task, a 6-hidden layer neural network with a preference mechanism, namely Preference Neural network (PNN), has been developed in this study based on the field data from 2018 to 2020. PNN takes soil total nitrogen, organic matter, total salt, pH, irrigation time and target soil depth as input, and irrigation amount and nitrogen application rate (N rate) as output, and the prior preference matrix was used to adjust the learning of weight matrix of each layer. The outcomes indicated that the predictive accuracy of PNN for irrigation amount were (R2 = 0.913, MAE = 0.018, RMSE = 0.022), and for N rate were (R2 = 0.943, MAE = 0.009, RMSE = 0.011). The R2 predicted by PNN at the irrigation amount and N rate were 40.03% to more than 99% and 40.33% to more than 99% higher than those obtained using support vector regression (SVR), linear regression (LR), logistic regression (LOR) and traditional back propagation neural network (BPNN), respectively. In addition, compared with the neural network (Reverse Multilayer Perceptron, RMLP) with the same structure but no preference structure, the R2 of the predicted irrigation amount and N rate by PNN increased by 25.81% and 27.99%, respectively. The results showed that, through the irrigation of 93 to 102, 92 to 98 and 92 to 98 mm, along with nitrogen applications of 65 to 71, 64 to 73 and 72 to 81 kg/hm2 at 17, 59 and 87 days after sowing, respectively, the organic matter, total nitrogen, total salt content and pH of the soil would reach high fertility levels simultaneously.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC