Bioinspired 5-caffeoylquinic acid capped silver nanoparticles using Coffee arabica leaf extract for high-sensitive cysteine detection

Author:

Harsha Haridas E. S.,Bhattacharya Susmita,Varma M. K. Ravi,Chandra Goutam Kumar

Abstract

AbstractSelection of plant extracts as bioactive phytochemical source to synthesize nanoparticles is highly demanding due to the biocompatibility, nontoxicity, and cost-effectiveness over other available physical and chemical methods. Here, for the first time, Coffee arabica leaf extracts (CAE) were used to produce highly stable silver nanoparticles (AgNPs) and the corresponding bio reduction, capping and stabilization mechanism mediated by dominant isomer 5-caffeoylquinic acid (5-CQA) is discussed. UV–Vis, FTIR, μRaman spectroscopy, TEM, DLS and Zeta potential analyzer measurements were employed to characterize these green synthesized NPs. The affinity of 5-CQA capped CAE–AgNPs to thiol moiety of amino acid is utilized for the selective as well as sensitive detection of L-cysteine (L-Cys) to a low detection limit of 0.1 nM, as obtained from its μRaman spectra. Hence, the proposed novel, simple, eco-friendly, and economically sustainable method can provide a promising nanoplatform in the field of biosensors compliant with large-scale industrial production of AgNPs without aid of further instrumentation.

Funder

National Institute of Technology Calicut

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3