Bone-conduction hyperacusis induced by superior canal dehiscence in human: the underlying mechanism

Author:

Guan Xiying,Cheng Y. Song,Galaiya Deepa J.,Rosowski John J.,Lee Daniel J.,Nakajima Hideko Heidi

Abstract

AbstractOur ability to hear through bone conduction (BC) has long been recognized, but the underlying mechanism is poorly understood. Why certain perturbations affect BC hearing is also unclear. An example is BC hyperacusis (hypersensitive BC hearing)—an unnerving symptom experienced by patients with superior canal dehiscence (SCD). We measured BC-evoked sound pressures in scala vestibuli (PSV) and scala tympani (PST) at the basal cochlea in cadaveric human ears, and estimated hearing by the cochlear input drive (PDIFF = PSV – PST) before and after creating an SCD. Consistent with clinical audiograms, SCD increased BC-driven PDIFF below 1 kHz. However, SCD affected the individual scalae pressures in unexpected ways: SCD increased PSV below 1 kHz, but had little effect on PST. These new findings are inconsistent with the inner-ear compression mechanism that some have used to explain BC hyperacusis. We developed a computational BC model based on the inner-ear fluid-inertia mechanism, and the simulated effects of SCD were similar to the experimental findings. This experimental-modeling study suggests that (1) inner-ear fluid inertia is an important mechanism for BC hearing, and (2) SCD facilitates the flow of sound volume velocity through the cochlear partition at low frequencies, resulting in BC hyperacusis.

Funder

National Institutes of Health

Hearing Health Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3