Immunological characterization and diagnostic models of RNA N6-methyladenosine regulators in Alzheimer's disease

Author:

Hui Yuan,Ma Qi,Zhou Xue-Rui,Wang Huan,Dong Jian-Hua,Gao Li-Na,Zhang Tian,Li Yan-Yi,Gong Ting

Abstract

AbstractAlzheimer's disease (AD) is the most prevalent form of dementia, and it displays both clinical and molecular variability. RNA N6-methyladenosine (m6A) regulators are involved in a wide range of essential cellular processes. In this study, we aimed to identify molecular signatures associated with m6A in Alzheimer's disease and use those signatures to develop a predictive model. We examined the expression patterns of m6A regulators and immune features in Alzheimer’s disease using the GSE33000 dataset. We examined the immune cell infiltration and molecular groups based on m6A-related genes in 310 Alzheimer's disease samples. The WGCNA algorithm was utilized to determine differently expressed genes within each cluster. After evaluating the strengths and weaknesses of the random forest model, the support vector machine model, the generalized linear model, and eXtreme Gradient Boosting, the best machine model was selected. Methods such as nomograms, calibration curves, judgment curve analysis, and the use of independent data sets were used to verify the accuracy of the predictions made. Alzheimer's disease and non-disease Alzheimer's groups were compared to identify dysregulated m6A-related genes and activated immune responses. In Alzheimer's disease, two molecular clusters linked to m6A were identified. Immune infiltration analysis indicated substantial variation in protection between groups. Cluster 1 included processes like the Toll-like receptor signaling cascade, positive regulation of chromatin binding, and numerous malignancies; cluster 2 included processes like the cell cycle, mRNA transport, and ubiquitin-mediated proteolysis. With a lower residual and root mean square error and a larger area under the curve (AUC = 0.951), the Random forest machine model showed the greatest discriminative performance. The resulting random forest model was based on five genes, and it performed well (AUC = 0.894) on external validation datasets. Accuracy in predicting Alzheimer's disease subgroups was also shown by analyses of nomograms, calibration curves, and decision curves. In this research, we methodically outlined the tangled web of connections between m6A and AD and created a promising prediction model for gauging the correlation between m6A subtype risk and AD pathology.

Funder

Postgraduate Innovation and Entrepreneurship Project of Gansu University of Chinese Medicine

Natural Science Foundation of Gansu Province Project

Research project on the combination of Chinese and Western medicine to combat drug-resistant bacteria

Joint Chinese and Western Medicine Research Project for Major Diseases

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3