Author:
Nikolopoulos Nikos,Matos Renata C.,Courtin Pascal,Ayala Isabel,Akherraz Houssam,Simorre Jean-Pierre,Chapot-Chartier Marie-Pierre,Leulier François,Ravaud Stéphanie,Grangeasse Christophe
Abstract
AbstractTeichoic acids (TA) are crucial for the homeostasis of the bacterial cell wall as well as their developmental behavior and interplay with the environment. TA can be decorated by different modifications, modulating thus their biochemical properties. One major modification consists in the esterification of TA by d-alanine, a process known as d-alanylation. TA d-alanylation is performed by the Dlt pathway, which starts in the cytoplasm and continues extracellularly after d-Ala transportation through the membrane. In this study, we combined structural biology and in vivo approaches to dissect the cytoplasmic steps of this pathway in Lactiplantibacillus plantarum, a bacterial species conferring health benefits to its animal host. After establishing that AcpS, DltB, DltC1 and DltA are required for the promotion of Drosophila juvenile growth under chronic undernutrition, we solved their crystal structure and/or used NMR and molecular modeling to study their interactions. Our work demonstrates that the suite of interactions between these proteins is ordered with a conserved surface of DltC1 docking sequentially AcpS, DltA and eventually DltB. Altogether, we conclude that DltC1 acts as an interaction hub for all the successive cytoplasmic steps of the TA d-alanylation pathway.
Funder
Agence Nationale de la Recherche
Centre National de la Recherche Scientifique
Université Claude Bernard Lyon 1
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献