The complete plastome sequences of invasive weed Parthenium hysterophorus: genome organization, evolutionary significance, structural features, and comparative analysis
-
Published:2024-02-18
Issue:1
Volume:14
Page:
-
ISSN:2045-2322
-
Container-title:Scientific Reports
-
language:en
-
Short-container-title:Sci Rep
Author:
Lubna ,Asaf Sajjad,Jan Rahmatullah,Asif Saleem,Bilal Saqib,Khan Abdul Latif,Al-Rawahi Ahmed N.,Kim Kyung-Min,AL-Harrasi Ahmed
Abstract
AbstractParthenium hysterophorus, a globally widespread weed, poses a significant threat to agricultural ecosystems due to its invasive nature. We investigated the chloroplast genome of P. hysterophorus in this study. Our analysis revealed that the chloroplast genome of P. hysterophorus spans a length of 151,881 base pairs (bp). It exhibits typical quadripartite structure commonly found in chloroplast genomes, including inverted repeat regions (IR) of 25,085 bp, a small single copy (SSC) region of 18,052 bp, and a large single copy (LSC) region of 83,588 bp. A total of 129 unique genes were identified in P. hysterophorus chloroplast genomes, including 85 protein-coding genes, 36 tRNAs, and eight rRNAs genes. Comparative analysis of the P. hysterophorus plastome with those of related species from the tribe Heliantheae revealed both conserved structures and intriguing variations. While many structural elements were shared among the species, we identified a rearrangement in the large single-copy region of P. hysterophorus. Moreover, our study highlighted notable gene divergence in several specific genes, namely matK, ndhF, clpP, rps16, ndhA, rps3, and ndhD. Phylogenetic analysis based on the 72 shared genes placed P. hysterophorus in a distinct clade alongside another species, P. argentatum. Additionally, the estimated divergence time between the Parthenium genus and Helianthus (sunflowers) was approximately 15.1 million years ago (Mya). These findings provide valuable insights into the evolutionary history and genetic relationships of P. hysterophorus, shedding light on its divergence and adaptation over time.
Publisher
Springer Science and Business Media LLC
Reference92 articles.
1. Funk, V.A., Anderberg, A.A., Baldwin, B.G., Bayer, R.J., Bonifacino, J.M., Breitwieser, I., Brouillet, L., Carbajal, R., Chan, R. & Coutinho, A.X. Compositae Metatrees: The Next Generation, Systematics, Evolution, and Biogeography of Compositae (2009). 2. Pascual-Díaz, J. P., Garcia, S. & Vitales, D. Plastome diversity and phylogenomic relationships in Asteraceae. Plants 10(12), 2699 (2021). 3. Adkins, S. & Shabbir, A. Biology, ecology and management of the invasive parthenium weed (Parthenium hysterophorus L.). Pest Manag. Sci. 70(7), 1023–1029 (2014). 4. Navie, S., Panetta, F., McFadyen, R. & Adkins, S. Behaviour of buried and surface-sown seeds of Parthenium hysterophorus. Weed Res. (Oxford) 38(5), 335–341 (1998). 5. Tamado, T., Ohlander, L. & Milberg, P. Interference by the weed Parthenium hysterophorus L. with grain sorghum: Influence of weed density and duration of competition. Int. J. Pest Manag. 48(3), 183–188 (2002).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|