Aiding food security and sustainability efforts through graph neural network-based consumer food ingredient detection and substitution

Author:

Foster Jack,Brintrup Alexandra

Abstract

AbstractUnderstanding precisely what is in food products is not always straightforward due to food fraud, differing labelling regulations, naming inconsistencies and the hierarchical nature of ingredients. Despite this, the need to detect and substitute ingredients in consumer food products is far-reaching. The cultivation and production of many ingredients is unsustainable, and can lead to widespread deforestation and biodiversity loss. Understanding the presence and replaceability of these ingredients is an important step in reducing their use. Furthermore, certain ingredients are critical to consumer food products, and identifying these ingredients and evaluating supply-chain resilience in the event of losing access to them is vital for food security analysis. To address these issues, we first present a novel machine learning approach for detecting the presence of unlabelled ingredients. We then characterise the unsolved problem of proposing viable food substitutions as a directed link prediction task and solve it with a graph neural network (GNN).

Funder

EPSRC Centre for Doctoral Training in Agri-Food Robotics

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3