Comparing predictions among competing risks models with rare events: application to KNOW-CKD study—a multicentre cohort study of chronic kidney disease

Author:

Kim Jayoun,Lee Soohyeon,Kim Ji Hye,Im Dha Woon,Lee Donghwan,Oh Kook-Hwan

Abstract

AbstractA prognostic model to determine an association between survival outcomes and clinical risk factors, such as the Cox model, has been developed over the past decades in the medical field. Although the data size containing subjects’ information gradually increases, the number of events is often relatively low as medical technology develops. Accordingly, poor discrimination and low predicted ability may occur between low- and high-risk groups. The main goal of this study was to evaluate the predicted probabilities with three existing competing risks models in variation with censoring rates. Three methods were illustrated and compared in a longitudinal study of a nationwide prospective cohort of patients with chronic kidney disease in Korea. The prediction accuracy and discrimination ability of the three methods were compared in terms of the Concordance index (C-index), Integrated Brier Score (IBS), and Calibration slope. In addition, we find that these methods have different performances when the effects are linear or nonlinear under various censoring rates.

Funder

National Research Foundation of Korea

Korea Disease Control and Prevention Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3