Abstract
Abstract
The near exponential proliferation of published Raman microspectroscopic applications over the last decade bears witness to the strengths and versatility of this technology. However, laser-induced fluorescence often severely impedes its application to biological samples. Here we report a new approach for near complete elimination of laser-induced background fluorescence in highly pigmented biological specimens (e.g., microalgae) enabling interrogation by Raman microspectroscopy. Our simple chemiphotobleaching method combines mild hydrogen peroxide oxidation with broad spectrum visible light irradiation of the entire specimen. This treatment permits observing intracellular distributions of macromolecular pools, isotopic tracers, and even viral propagation within cells previously not amenable to Raman microspectroscopic examination. Our approach demonstrates the potential for confocal Raman microspectroscopy becoming an indispensable tool to obtain spatially-resolved data on the chemical composition of highly fluorescent biological samples from individual cells to environmental samples.
Funder
Gordon and Betty Moore Foundation
National Science Foundation
Publisher
Springer Science and Business Media LLC
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献