Experimental investigation and simulation analysis of cast-steel joints under vertical pressure

Author:

Li Zhihao,Zhang Yizhong,Du Wenfeng,Zhu Liming

Abstract

AbstractThe joint made of cast steel is frequently utilized within a treelike column structure to ensure a smooth transition. It is of great significance in ensuring the overall structural safety, but currently, the mechanical property and bearing capacity of this type of joint cannot be fully understood. This study investigates the load characteristics of three-forked cast steel joints through concrete experiments, finite element analysis, and regression method formula derivation, filling the gap in mechanical properties and calculation formulas of forked cast steel joints. Initially, a comprehensive model of the cast-steel joint, sourced from a practical engineering, underwent vertical load testing. Detailed scrutiny of stress distribution and vertical displacement of the tested joint was conducted based on the experimental outcomes. Subsequently, a finite element model of the tested joint was constructed using SolidWorks and subjected to analysis via ANSYS. The numerical findings were juxtaposed with experimental data and extrapolated to encompass other parametric scenarios. Ultimately, a regression analysis method was employed to derive a calculation formula for the load-carrying capacity of branch-bearing cast-steel joints. The regression analysis method can accurately obtain the load-bearing capacity calculation formula for tree-shaped joint models and can be extended to determine corresponding branch and main pipe dimensions, as well as the deviation angle between branches and the main pipe, under known load conditions. This improves design efficiency and accuracy. Comparative analysis reveals a substantial concurrence among experimental, finite element analysis, and formula-based predictive outcomes. The maximum error between experimental results and those obtained from finite element analysis is 9.02%. The maximum error between the results calculated using the load-bearing capacity formula derived from regression methods and those from finite element analysis is only 1.9%.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3