Release dynamics of nanodiamonds created by laser-driven shock-compression of polyethylene terephthalate

Author:

Heuser Ben,Bergermann Armin,Stevenson Michael G.,Ranjan Divyanshu,He Zhiyu,Lütgert Julian,Schumacher Samuel,Bethkenhagen Mandy,Descamps Adrien,Galtier Eric,Gleason Arianna E.,Khaghani Dimitri,Glenn Griffin D.,Cunningham Eric F.,Glenzer Siegfried H.,Hartley Nicholas J.,Hernandez Jean-Alexis,Humphries Oliver S.,Katagiri Kento,Lee Hae Ja,McBride Emma E.,Miyanishi Kohei,Nagler Bob,Ofori-Okai Benjamin,Ozaki Norimasa,Pandolfi Silvia,Qu Chongbing,May Philipp Thomas,Redmer Ronald,Schoenwaelder Christopher,Sueda Keiichi,Yabuuchi Toshinori,Yabashi Makina,Lukic Bratislav,Rack Alexander,Zinta Lisa M. V.,Vinci Tommaso,Benuzzi-Mounaix Alessandra,Ravasio Alessandra,Kraus Dominik

Abstract

AbstractLaser-driven dynamic compression experiments of plastic materials have found surprisingly fast formation of nanodiamonds (ND) via X-ray probing. This mechanism is relevant for planetary models, but could also open efficient synthesis routes for tailored NDs. We investigate the release mechanics of compressed NDs by molecular dynamics simulation of the isotropic expansion of finite size diamond from different P-T states. Analysing the structural integrity along different release paths via molecular dynamic simulations, we found substantial disintegration rates upon shock release, increasing with the on-Hugnoiot shock temperature. We also find that recrystallization can occur after the expansion and hence during the release, depending on subsequent cooling mechanisms. Our study suggests higher ND recovery rates from off-Hugoniot states, e.g., via double-shocks, due to faster cooling. Laser-driven shock compression experiments of polyethylene terephthalate (PET) samples with in situ X-ray probing at the simulated conditions found diamond signal that persists up to 11 ns after breakout. In the diffraction pattern, we observed peak shifts, which we attribute to thermal expansion of the NDs and thus a total release of pressure, which indicates the stability of the released NDs.

Funder

China Scholarship Council

GSI Helmholtzzentrum für Schwerionenforschung

Deutsche Forschungsgemeinschaft

DOE Office of Science, Fusion Energy Science

DOE

DOE NNSA SSGF

Helmholtz-Zentrum Dresden - Rossendorf e.V.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3