Rapid photonic curing effects of xenon flash lamp on ITO–Ag–ITO multilayer electrodes for high throughput transparent electronics

Author:

Zhao Zhenqian,Rose Alex,Kwon Sang Jik,Jeon Yongmin,Cho Eou-Sik

Abstract

AbstractHigh-throughput transparent and flexible electronics are essential technologies for next-generation displays, semiconductors, and wearable bio-medical applications. However, to manufacture a high-quality transparent and flexible electrode, conventional annealing processes generally require 5 min or more at a high temperature condition of 300 °C or higher. This high thermal budget condition is not only difficult to apply to general polymer-based flexible substrates, but also results in low-throughput. Here, we report a high-quality transparent electrode produced with an extremely low thermal budget using Xe-flash lamp rapid photonic curing. Photonic curing is an extremely short time (~ μs) process, making it possible to induce an annealing effect of over 800 °C. The photonic curing effect was optimized by selecting the appropriate power density, the irradiation energy of the Xe-flash lamp, and Ag layer thickness. Rapid photonic curing produced an ITO–Ag–ITO electrode with a low sheet resistance of 6.5 ohm/sq, with a high luminous transmittance of 92.34%. The low thermal budget characteristics of the rapid photonic curing technology make it suitable for high-quality transparent electronics and high-throughput processes such as roll-to-roll.

Funder

Korea Health Industry Development Institute

Gachon University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3