Efficient content caching for 5G assisted vehicular networks

Author:

Ahmed Faareh,Alsamani Badr,Alkhathami Mohammed,Alsadie Deafallah,Alosaimi Norah,Alenzi Badriya,Nkenyereye Lewis

Abstract

AbstractTraffic congestion is one of the major challenges faced by daily commuters in smart cities. An autonomous transportation system with a 5 G-based Cellular Vehicle-to-Everything (C-V2X) communication system is the solution to meet the traffic challenges faced in smart cities. Vehicular networks provide wireless connectivity to enable a large number of connected vehicle applications. Vehicular networks allow vehicles to share their emergency and infotainment traffic by following vehicle-to-vehicle (V2V) or by using vehicle-to-infrastructure (V2I) communication. The infrastructure of vehicular networks mainly comprises multiple Road Side Units (RSUs). Fog computing nodes are placed adjacent to these RSUs to provide quick access to vehicles. For infotainment traffic, vehicles intend to download their required content from the content provider. Caching the same contents from the nearby fog computing node significantly reduces delay with improved quality of service. As there are millions of contents with varying sizes, caching all demanded contents on these fog nodes is not possible due to their limited caching capacity. In this work, we propose an improved content caching scheme for fog nodes to satisfy vehicles and content providers for fair content placement. The proposed algorithm is based on a modified Gale–Shapley technique that considers factors such as content popularity, vehicle connectivity, and quality of the communication channel to optimize the content caching process. Simulation results show that the proposed technique caches a higher number of popular contents with lower downloading time.

Funder

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3