Phenomenological models of NaV1.5. A side by side, procedural, hands-on comparison between Hodgkin-Huxley and kinetic formalisms

Author:

Andreozzi EmilioORCID,Carannante Ilaria,D’Addio Giovanni,Cesarelli Mario,Balbi PietroORCID

Abstract

AbstractComputational models of ion channels represent the building blocks of conductance-based, biologically inspired models of neurons and neural networks. Ion channels are still widely modelled by means of the formalism developed by the seminal work of Hodgkin and Huxley (HH), although the electrophysiological features of the channels are currently known to be better fitted by means of kinetic Markov-type models. The present study is aimed at showing why simplified Markov-type kinetic models are more suitable for ion channels modelling as compared to HH ones, and how a manual optimization process can be rationally carried out for both. Previously published experimental data of an illustrative ion channel (NaV1.5) are exploited to develop a step by step optimization of the two models in close comparison. A conflicting practical limitation is recognized for the HH model, which only supplies one parameter to model two distinct electrophysiological behaviours. In addition, a step by step procedure is provided to correctly optimize the kinetic Markov-type model. Simplified Markov-type kinetic models are currently the best option to closely approximate the known complexity of the macroscopic currents of ion channels. Their optimization can be achieved through a rationally guided procedure, and allows to obtain models with a computational burden that is comparable with HH models one.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3