A novel feature for monitoring the enzymatic harvesting process of adherent cell cultures based on lens-free imaging

Author:

Deckers T.,Aerts J.-M.,Bloemen V.

Abstract

AbstractAdherent cell cultures are often dissociated from their culture vessel (and each other) through enzymatic harvesting, where the detachment response is monitored by an operator. However, this approach is lacking standardisation and reproducibility, and prolonged exposure or too high concentrations can affect the cell’s viability and differentiation potential. Quantitative monitoring systems are required to characterise the cell detachment response and objectively determine the optimal time-point to inhibit the enzymatic reaction. State-of-the-art methodologies rely on bulky imaging systems and/or features (e.g. circularity) that lack robustness. In this study, lens-free imaging (LFI) technology was used to develop a novel cell detachment feature. Seven different donors were cultured and subsequently harvested with a (diluted) enzymatic harvesting solution after 3, 5 and 7 days of culture. Cell detachment was captured with the LFI set-up over a period of 20 min (every 20 s) and by optimising the reconstruction of the LFI intensity images, a new feature could be identified. Bright regions in the intensity image were identified as detaching cells and using image analysis, a method was developed to automatically extract this feature, defined as the percentage of detached cell regions. Next, the method was quantitatively and qualitatively validated on a diverse set of images. Average absolute error values of 1.49%, 1.34% and 1.97% were obtained for medium to high density and overconfluent cultures, respectively. The detachment response was quantified for all conditions and the optimal time for enzyme inhibition was reached when approximately 92.5% of the cells were detached. On average, inhibition times of 9.6–11.1 and 16.2–17.2 min were obtained for medium to high density and overconfluent cultures, respectively. In general, overconfluent cultures detached much slower, while their detachment rate was also decreased by the diluted harvesting solution. Moreover, several donors exhibited similar trends in cell detachment behaviour, with two clear outliers. Using the novel feature, measurements can be performed with an increased robustness, while the compact LFI design could pave the way for in situ monitoring in a variety of culture vessels, including bioreactors.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3