Fe3O4@Glycerol-Cu as a novel heterogeneous magnetic nanocatalyst for the green synthesis of 2-amino-4H-chromenes

Author:

Poursattar Marjani AhmadORCID,Asadzadeh FatemehORCID,Danandeh Asl AriaORCID

Abstract

AbstractIn the present study, the Fe3O4@Glycerol-Cu complex supported magnetically as a nanoparticle was prepared by grafting. Firstly, Fe3O4 NPs were synthesized by FeCl3.6H2O and FeCl2.4H2O according to the reported method, and subsequently, the prepared MNP with 3-chloropropyltrimethoxysilane. After that, the support-glycerol was functionalized on the surface of MNP-(CH2)3Cl for graft and stabilization of copper metal. Our purpose is to use the Fe3O4@Glycerol-Cu as a green, recoverable, novel, and affordable nanocatalyst in the effective synthesis of 2-amino-4H-chromenes. FT-IR, XRD, TGA, BET, VSM, TEM, and SEM–EDX techniques were examined to characterize this nanocatalyst. This result demonstrates that copper and organic compounds have appropriately reacted, with the support of MNP-(CH2)3Cl, and the crystalline structure have preserved in the MNP-(CH2)3Cl/Glycerol-Cu nanocatalyst confirmed the formation of the base Cu complex grafted on the surface of the nanoparticles. Finally, as can be seen, the nanoparticle size is 5–15 nm. This heterogeneous nanocatalyst illustrated excellent recyclable behavior, and can be used several times without notable reduction of its activity.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3