Effects of various types of organo-mica on the physical properties of polyimide nanocomposites

Author:

Jeon Hara,Na Changyub,Kwac Lee Ku,Kim Hong Gun,Chang Jin-Hae

Abstract

AbstractPoly(amic acid) (PAA) was synthesized using dianhydride 4,4’-oxydiphthalic anhydride and diamine 3,3'-dihydroxybenzidine, and polyimide (PI) hybrid films were synthesized by dispersing organo-mica in PAA through a solution intercalation method. Hexadimethrine-mica (HM-Mica), 1,2-dimethylhexadecylimidazolium-mica (MI-Mica), and didodecyldiphenylammonium-mica (DP-Mica), which were obtained via the organic modification of pristine mica, were used as the organo-micas for the PI hybrid films. The organo-mica content was varied from 0.5 to 3.0 wt% with respect to the PI matrix. The thermomechanical properties, morphology, and optical transparency of the resultant PI hybrid films were measured and compared. Dispersion of even small amounts of organo-mica effectively improved the physical properties of the PI hybrids, and maximum enhancements in physical properties were observed at a specific critical content. Electron microscopy of the hybrid films revealed that the organo-mica uniformly dispersed throughout the polymer matrix at the nanoscale level when added at low contents but aggregated in the matrix when added at levels above the critical content. Structural changes in the organo-mica closely influenced the changes in the physical properties of the hybrid films. All PI hybrid films with various organo-mica contents showed similar optical properties, but that prepared with MI-Mica demonstrated the best thermomechanical properties. All synthesized PI hybrid films were transparent regardless of the type and content of organo-mica used.

Funder

National Research Foundation of Korea (NRF) funded by the Ministry of Education

National Research Foundation of Korea (NRF) grant funded the Korea government (MSIT) .

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3